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Abstract

A new type of plate theory based on a general, unified, theoretical framework for the response of (von Karman)
nonlinear, delaminated plate theories in the presence of thermo-diffusional-mechanical coupling is presented. The the-
ory is based on the unique use of two length scale expansions obtained from a superposition of global and local effects
for the displacement, temperature, and solute concentration fields. The orders and forms of these local and global dis-
placement, temperature, and solute fields are arbitrary. The theory incorporates delamination and/or nonlinear elastic
or inelastic interfacial behavior for the mechanical, thermal, and concentration effects in a unified fashion through the
use of generalized interfacial constitutive (cohesive) relations. The mathematical framework introduces new types of
coupling effects between the different length scale effects of all three fields. The resulting unified theoretical framework
can be used to consider the general thermo-diffusionally-mechanically coupled response of laminated (or homogeneous)
plates in the presence of delaminations, buckling, and/or nonlinear material behavior. The author is unaware of any
previous attempts to develop plate theory formulations capable of considering the multitude of effects incorporated into
the proposed framework.

It is shown that existing displacement-based plate theories for both the mechanical as well as thermo-mechanical
behavior of laminated plates can be obtained via suitable specializations of the proposed framework. New types of plate
theories can be obtained through various specializations of the proposed general theory.
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1. Introduction

The design of advanced structures has seen the increased usage of laminated (composite) plates and
shells. As the design demands on such structural members increase it becomes more important that accurate
theories be used in the analysis of such structural components. A natural choice for such analyses are two-
dimensional (2D) plate/shell theories. These types of theories provide a potentially more efficient and accu-
rate alternative to the use of three-dimensional finite element (FE) analysis.

To correctly model the response of laminated structures a 2D plate/shell theory must incorporate a vari-
ety of different deformation mechanisms. These mechanisms occur at several characteristic length-scales.
These length scales can be roughly separated into three categories.

The first such length scale occurs at the micro-level and is associated with material microstructure (i.e.
fiber/matrix in a composite material or metal grains within a polycrystal). Typically, the response at this
length scale is considered within the context of constitutive models. Given the many forms of such consti-
tutive relations a plate/shell theory should be sufficiently general as to be able to incorporate any type of
material constitutive model. Furthermore, given the nonlinear evolution equations present in general con-
stitutive models, a plate/shell theory must be able to accurately predict the local fields in order to correctly
predict the plate response.

The next higher length scale (the meso-length scale) is associated with the lamina thickness. A primary
deformation mechanism associated with this characteristic length is delamination. Delaminations typically
develop during service and can significantly reduce the loading carrying capabilities of a laminated struc-
ture. These considerations imply that plate and shell theories should be able to predict the initiation and
growth of delaminations at any point (and at any time) in a structure.

The final category of characteristic length scales, the global length scale, is associated with the entire lam-
inate thickness. Typical responses associated with this length scale are the buckling or gross motion of the
entire plate/shell. Correct modeling of these types of behavior requires that geometric nonlinear effects be
incorporated into structural theories.

While the above effects have been discussed individually, it must be recognized that these mechanisms are,
typically, interactive. For example, it has been shown that viscoplasticity can have a significant effect on the
critical bucking load and the post-behavior of laminated plates (Gilat and Aboudi, 1994). Other examples of
interactive effects exist throughout the literature. The presence of these interactive effects implies the need for
structural theories that are capable of coupling different phenomena over different length scales.

The previous discussion has centered around the influence of different mechanical effects on the behavior
of plates/shells. The behavior of a plate/shell can also be influenced by the presence of temperature and/or
solute concentration fields.

The temperature and deformation fields are always coupled, thermo-mechanical coupling (TMC), due to
the presence of both temperature and deformation effects in the constitutive, equilibrium, and energy equa-
tions of a continuum. A basic presentation of the issues associated with TMC phenomena is given by Boley
and Wiener (1985).

Thermo-mechanical coupling impacts the structural response at all three of the length scales discussed above.
At the micro-level, the presence of history-dependent phenomena in the form of the inelastic work term in the
energy equation results in a potentially strong forcing term for the local temperature rate. This type of effect in
monolithic materials was considered by Allen (1991) where it was shown that TMC can cause significant devi-
ations from anuncoupled thermo-mechanical analysis. Recentwork byWilliams andAboudi (1999) considered
the influence ofTMCeffects on the constitutive behavior of composites. Itwas shown that the influence ofTMC
at the microstructural level on the effective constitutive behavior of particulate composites could lead to signif-
icant deviations in the predicted effective stress–strain response as compared to an uncoupled analysis.

At the meso-scale coupling between delaminations and temperature could take several forms. In
particular, the energy dissipation due to fracture/delamination and/or subsequent frictional sliding of
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the separated surfaces can generate localized heating in the adjacent materials. Additionally, the presence of
delaminations can result in distinctly different temperature distributions (as compared to perfectly bonded
structures) since the presence of distinct cracks prevents heat transfer across interfaces.

At the global length scale, the work by Gilat and Aboudi (1996) on the buckling behavior of laminated
and homogeneous plates has shown that TMC effects can significantly alter both the critical and post-buck-
ling response of composite plates as compared to the predictions obtained from an uncoupled analysis. This
work also gives a partial review of previous modeling which has considered the impact of TMC on the re-
sponse of plates.

The presence of solute concentrations within a plate can impact the plate behavior in a fashion analo-
gous to that of temperature effects due to the fact that, in general, the temperature, deformation, and solute
concentration fields can be considered to be coupled through the constitutive, equilibrium, energy, and sol-
ute conservation equations of a continuum (Weitsman, 1987; Sih et al., 1986). This type of coupling is re-
ferred to as thermo-diffusional-mechanical coupling (TDMC) or as stress-assisted diffusion.

Since advanced structures operate under service conditions where TDMC effects can be significant it is
important that plate/shell theories be able to consider TDMC effects. Relatively little work seems to have
been carried out considering the impact of full coupling between thermal and mechanical effects compared
to the amount of work done on the mechanical response of plates. To date there does not seem to exist a
general theoretical treatment of TDMC within the context of plate/shell theories.

The purpose of this paper is to present a generalized, unified, theoretical framework for the development
of any order/type of multilength scale, (von Karman) nonlinear, laminated, plate theory in the presence of
thermo-diffusional-mechanical coupling and delamination. The theory is based on the use of generalized
expansions composed of global and local effects for the displacement, temperature, and solute concentra-
tion fields within the laminated plate. The use of multilength scale field expansions introduces unique cou-
pling effects between the global and local scales in all of the fields. The thermo-diffusional-mechanically
coupled governing equations for the behavior of the plate are developed using Hamilton�s principle and
the method of moments form of the energy equation, and the equation for the conservation of solute.
The effects of delamination on the different fields are introduced into the theory in a internally consistent
fashion through the use of generalized interfacial constitutive models (ICMs). Geometric nonlinearity is
introduced into the theoretical framework through the use of Von Karman type strains. No restrictions
are imposed on the material constitutive relations for the layers. The resulting governing equations are
functions of the fundamental unknown kinematic, temperature, and solute variables used in the expansions
for the different fields in the individual layers. The proposed theoretical framework is an generalization of
the purely mechanical theory presented by Williams (1999).

There are several aspects of the theory that are significance: First, the theory represents a new type of
plate theory capable of considering thermo-mechanical-diffusional and delamination phenomena simulta-
neously. The second unique aspect is the multiscale nature of the theory obtained from the superposition of
generalized local and global fields. Third, the theory seems to be the first plate theory capable of considering
this broad range of effects in a coupled fashion. Furthermore, since any order/type of multilength scale the-
ory or any currently available displacement based (‘‘smeared’’, discrete layer, ‘‘zig-zag’’, or homogeneous)
plate theory can be obtained as a subset of the proposed framework, the current approach represents a uni-
fied framework for the development of plate theories.
2. Theoretical framework

The following conventions are used throughout the formulation. Superscripts (k) denote the layer num-
ber. Otherwise, superscripts will denote the number (order) of both global and local functions. Subscripts
denote tensorial indices. Greek subscripts are considered to have a range of 1 and 2. Latin subscripts have a
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range of 1–3. Repeated superscripts, (other than (k)), and subscripts imply summation. A comma or oi de-
notes differentiation with respect to the spatial coordinates, xi. A dot denotes differentiation with respect to
time.

The global coordinates associated with the plate are x1, x2, x3. The reference plane (x3 = 0) is taken at
the midplane of the laminate. The plate is considered to be composed of an arbitrary number of layers, N. A
layer can contain a single lamina, several lamina, or a sublamina region. The local coordinates for a layer
are denoted by xa, �x3 where xðkÞ3 6 �x3 6 xðkþ1Þ

3 , Fig. 1.

2.1. Field expansions

The displacement field for the kth layer is given by
uðkÞa ðx; tÞ ¼ Ur
aðxa; tÞP rðx3Þ þ lðkÞs

a ðxa; tÞpðkÞsð�x3Þ
uðkÞ3 ðx; tÞ ¼ Up

3ðxa; tÞPpðx3Þ þ lðkÞq
3 ðxa; tÞpðkÞqð�x3Þ

ð2:1Þ
where r ¼ Jmin; . . . ; Jmax and s ¼ bJmin; . . . ; bJmax and p ¼ Lmin; . . . ; Lmax and q ¼ bLmin; . . . ; bLmax. Eq. (2.1) rep-
resents a generalization of the original displacement expansions used by Williams (1999) since it allows for
different order expansions in the inplane and out of plane displacement components.

The temperature field within the kth layer is assumed to be of the following form
T ðkÞðx; tÞ ¼ Haðxa; tÞGaðx3Þ þ hðkÞbðxa; tÞgðkÞbð�x3Þ ð2:2Þ

where a ¼ �Amin; . . . ; �Amax and b ¼ Bmin; . . . ;Bmax.

The solute concentration field within the kth layer is given by
mðkÞðx; tÞ ¼ Scðxa; tÞLcðx3Þ þ sðkÞdðxa; tÞlcðx3Þ ð2:3Þ

where c ¼ Cmin; . . . ;Cmax and d ¼ Dmin; . . . ;Dmax.

The functional forms and the orders of the expansions for the displacement, temperature, and solute
fields are arbitrary and, thus, the functions Pr, Pp, Ga, Lc, p(k)s, p(k)q, g(k)b, and l(k)d are unspecified. The
only restriction on the specification of the different components of the fields is that the expansion functions
for a given component of a field must be independent. A mathematically rigorous methodology for obtain-
ing the necessary independence of field components is to require that the functions be orthogonal.
Z xðkþ1Þ

3

xðkÞ
3

PmpðkÞn d�x3 ¼ 0Z xðkþ1Þ
3

xðkÞ
3

PmpðkÞn d�x3 ¼ 0Z xðkþ1Þ
3

xðkÞ
3

GmgðkÞn d�x3 ¼ 0Z xðkþ1Þ
3

xðkÞ
3

LmlðkÞn d�x3 ¼ 0

ð2:4Þ
The actual application of Eq. (2.4) is dependent upon the particular forms chosen for the expansion
functions Pr, Pp, Ga, Lc, p(k)s, p(k)q, g(k)b, and l(k)d. In choosing the local functional form it must be noted
that an independent local constant term cannot be used since it is impossible to orthogonalize two con-
stants, i.e. global and local constant terms over the layer thickness. Alternative possibilities for ensuring
independence of the expansion functions are discussed more fully by Williams (1999). The local parts of
the expansions in the different layers can potentially be of different order/form.

The layer displacement, temperature, and solute fields are functions of two different length scales
with respect to the thickness direction in the plate. The first set of terms in the displacement (Ur

a and



Fig. 1. Plate geometry and local layer coordinates.
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Up
3), temperature (Ha), and solute (Sc) fields, are associated with the global or structural length scale var-

iation in the fields. The associated expansion functions Pr, Pp, Ga, and Lc are continuous functions of the
plate thickness coordinate x3 for � h

2
6 x3 6 h

2
where h is the laminate thickness. The second set of terms in

the displacement, temperature, and solute fields; lðkÞs
a , lðkÞq

3 , h(k)b and s(k)d, represent variations in the global
fields, i.e. local effects. The associated local expansion functions p(k)s, p(k)q, g(k)b, and l (k)d are dependent
only on the local coordinates within the kth layer and are identically zero outside this layer. Both the global
and local components of the different fields vary simultaneously within the kth layer.

There are a number of physical interpretations that can be assigned to the assumed forms for the dis-
placements, temperature, and solute concentration fields, Eqs. (2.1)–(2.3). The global components of the
fields account for the gross behavior or overall trends in the response of the plate. The local field effects
can be interpreted as the variations in the global fields induced by the presence of local microstructure
caused by adjacent lamina with different fiber orientations, delaminations, or other meso-scale structural
effects/inhomogeneities. Alternatively, the local fields could be considered as the necessary corrections to
the global fields required to obtain accurate predictions for different loading situations in homogeneous
plates, for example dynamic loading situations (wave propagation effects).

2.2. Strain–displacement relations

To account for moderate rotations in the structure, such as due to buckling, geometric nonlinearities are
introduced into the theory through the use of von Karman type strains. Substituting Eq. (2.1) into the von
Karman type strain assumptions results in the following strain field within the kth layer
�
ðkÞ
11 ¼ o1Ur

1P
r þ o1l

ðkÞs
1 pðkÞs þ 1

2
o1U

p
3P

p þ o1l
ðkÞq
3 pðkÞq

� �2
�
ðkÞ
22 ¼ o2Ur

2P
r þ o2l

ðkÞs
2 pðkÞs þ 1

2
o2U

p
3P

p þ o2l
ðkÞq
3 pðkÞq

� �2
�
ðkÞ
33 ¼ Up

3o3P
p þ lðkÞq

3 o3p
ðkÞq

�
ðkÞ
23 ¼ 1

2
Ur

2o3P
r þ lðkÞs

2 o3pðkÞs þ o2U
p
3P

p þ o2l
ðkÞq
3 pðkÞq

� �
�
ðkÞ
13 ¼ 1

2
Ur

1o3P
r þ lðkÞs

1 o3pðkÞs þ o1U
p
3P

p þ o1l
ðkÞq
3 pðkÞq

� �
�
ðkÞ
12 ¼ 1

2
o2Ur

1P
r þ o2l

ðkÞs
1 pðkÞs þ o1Ur

2P
r þ o1l

ðkÞs
2 pðkÞs

h i
þ 1

2
o1U

p
3P

p þ o1l
ðkÞq
3 pðkÞq

� �
o2U

p
3P

p þ o2l
ðkÞq
3 pðkÞq

� �h i

ð2:5Þ
The results given in Eq. (2.5) are different than those given by Williams (1999) due to the use of the
(potentially) different expansions orders in Eq. (2.1).
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2.3. Equations of motion

The equations of motion are obtained using Hamilton�s principle
Z t2

t1

Z
V

rijd�ij dV �
Z
V

q€uidui dV �
Z
V
fidui dV �

Z
oV

tidui dS
� �

dt ¼ 0 ð2:6Þ
where V = hX, X is an arbitrary inplane area on the reference surface and oV is the outer surface of V. In
Eq. (2.6) the rij denote stresses, the �ij denote (nonlinear) strains, the ti are surface tractions, the body forces
are given by fi, and q is the density.

Using Eqs. (2.1) and (2.5) in Eq. (2.6) the following equations of motion are obtained:
I
rj €U

r
a þ

XN
k¼1

bI ðkÞsj€lðkÞs
a ¼ N

j
ab;b � R

j
a3 þ F

j
a þ sj

a

�I
pj €U

p
3 þ

XN
k¼1

�I
ðkÞqj

€lðkÞq
3 ¼ �N

j

3b;b � �R
j

33 þ oa
�M

pj

abU
p
3;b þ

XN
k¼1

M ðkÞqj
ab lðkÞq

3;b

 !
þ �F

j

3 þ �sj
3

bI ðkÞjr €Ur
a þ eI ðkÞsj€lðkÞs

a ¼ bN ðkÞj
ab;b � bRðkÞj

a3 þ bF ðkÞj
a þ ŝðkÞja

�I
ðkÞjp €U

p
3 þ I�ðkÞqj€lðkÞq

3 ¼ �N
ðkÞj
3b;b � �R

ðkÞj
33 þ oa M ðkÞjp

ab Up
3;b þ �M

ðkÞjq
ab lðkÞq

3;b

� �
þ �F

ðkÞj
3 þ �sðkÞj3

ð2:7Þ
where j ¼ Jmin; . . . ; Jmax in Eq. (2.7a), j ¼ Lmin; . . . ; Lmax in Eq. (2.7b), j ¼ bJmin; . . . ; bJmax in Eq. (2.7c),
q ¼ bLmin; . . . ; bLmax in Eq. (2.7d), k = 1, . . . ,N, and N is the number of layers in the laminate. The definitions
for the resultants in Eq. (2.7) are given in Appendix A. Eqs. (2.7a and b) are the equations of motion asso-
ciated with the global displacement effects Ur

a and Up
3. Thus, these equations can be considered to be

‘‘smeared’’ equations of motion for the plate. Conversely, Eqs. (2.7c and d) are related to the local effects
lðkÞs

a and lðkÞq
3 and, thus, can be interpreted as local equations of motion. While the different types of equa-

tions of motion are related to either a global or local displacement effect they are influenced by all of the
different length scale effects of all of the different fields. This will be discussed in more detail later. The above
system of equations could have been obtained from an equivalent vectorial (method of moments) analysis
as shown by Soldatos (1995) or Gilat (1996, 1998) where the weighting functions are the expansion func-
tions rather than simple polynomial terms in x3.

The essential boundary conditions obtained from the variational analysis are given by the specification
of
Uj
i ; lðkÞj

i on oX1 ð2:8Þ

where superscript j takes the appropriate range for the displacement component. The associated natural
boundary conditions are given by
T
j
a ¼ N

j
abnb

�T
j

3 ¼ �N
j

3a þ �M
rj

abobUr
3 þ

XN
k¼1

M ðkÞsj
ab obl

ðkÞs
3

 !" #
na

bT ðkÞj
a ¼ bN ðkÞj

ab nb

�T
ðkÞj
3 ¼ �N

ðkÞj
3a þ M ðkÞjr

ab obUr
3 þ �M

ðkÞsj
ab obl

ðkÞs
3

� �h i
na on oX2

ð2:9Þ
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The boundary of X is denoted by oX where oX = oX1 + oX2. The definitions used in Eq. (2.9) are given
in Appendix A.

The governing equations of motion associated with the individual layers, Eqs. (2.7c) and (2.7d), are cou-
pled through the interfacial constraints. In the presence of delaminations the appropriate forms for the dis-
placement, temperature, and solute jumps across the kth interface are
½ua�ðkÞ ¼ ls
ap

sðxðkþ1Þ
3 Þ

� �ðkþ1Þ
� ls

ap
sðxðkþ1Þ

3 Þ
� �ðkÞ

½u3�ðkÞ ¼ lq
3p

qðxðkþ1Þ
3 Þ

� �ðkþ1Þ
� lq

3p
qðxðkþ1Þ

3 Þ
� �ðkÞ

½T �ðkÞ ¼ hbgbðxðkþ1Þ
3 Þ

� �ðkþ1Þ
� hbgbðxðkþ1Þ

3 Þ
� �ðkÞ

½m�ðkÞ ¼ sdldðxðkþ1Þ
3 Þ

� �ðkþ1Þ
� sdldðxðkþ1Þ

3 Þ
� �ðkÞ

ð2:10Þ
If there are no delaminations then [ui]
(k) = 0, [T](k) = 0, and [m](k) = 0.

The corresponding traction continuity conditions are
ðtiÞðkÞ
���
xðkþ1Þ
3

¼ �ðtiÞðkþ1Þ
���
xðkþ1Þ
3

ð2:11aÞ
or, alternatively,
rðkþ1Þ
i3

���
xðkþ1Þ
3

¼ rðkÞ
i3

���
xðkþ1Þ
3

¼ rðkÞI
i3 ð2:11bÞ
where rðkÞI
i3 are defined to be the interfacial stresses at the kth interface. If there are no discontinuities in the

field variables then the above results, Eqs. (2.1)–(2.11), represent the mechanical part of the necessary the-
oretical framework for the analysis of perfectly bonded plates.

Delamination initiation and growth can be modeled through the use of interfacial constitutive models
(ICMs) without any a priori assumptions about the size or location of potential delaminations. The
mechanical forms of these models relate the field jumps across an interface, Eq. (2.10), to the corresponding
interfacial tractions, Eq. (2.11). The general functional form for these models is
t ¼ fð½u�; ½T �; ½m�Þ ð2:12Þ

where the vector t represents the interfacial tractions, [u] is the vector of displacement jumps across the
interface, and [T] is the temperature jump across the interface. Typical response curves for both the normal
(tn) and shear response (ts) of a generic mechanical ICM are shown in Fig. 2. In general, the shear and nor-
mal responses in a mechanical ICM are nonlinear and coupled. The initial slope of the response curves can
be related to the stiffness and thickness of the interlaminar region (Aboudi, 1991). After the peak stress is
reached the interface can exhibit softening. The normal response exhibits closure under compression (no
interpenetration) while the shear response is anti-symmetric. Interfacial constitutive models have a direct
relation to classical fracture mechanics (Corigliano, 1993). Various proposed forms for mechanical ICMs
are given by Aboudi (1991), Corigliano (1993), Needleman (1987, 1990), and McGee and Herakovich
(1992).

Use of mechanical ICMs allows the interfacial tractions ri3 to be eliminated from the formulation. Com-
bining Eqs. (2.10)–(2.12) results in the unknown interfacial stresses being expressed as functions of the un-
known kinematic, thermal, and solute terms in the different expansions, Eqs. (2.1)–(2.3), for the k + 1th and
kth layers (rðkÞI

i3 ¼ f ðkÞ
i ð½u�ðkÞ; ½T �ðkÞÞ; ½m�ðkÞ). Substituting this expression into Eqs. (2.7c) and (2.7d) eliminates

the interfacial tractions from the equations of motion.



Fig. 2. Typical response curves for both the normal (tn) and shear response (ts) of a generic mechanical ICM.
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bI ðkÞjr €Ur
a þ eI ðkÞsj€lðkÞs

a ¼ bN ðkÞj
ab;b � bRðkÞj

a3 þ bF ðkÞj
a þ DðkÞj

a

�I
ðkÞjr €U

r
3 þ I�ðkÞsj€lðkÞs

3 ¼ �N
ðkÞj
3b;b � �R

ðkÞj
33 þ oa M ðkÞjr

ab Ur
3;b þ �M

ðkÞjs
ab lðkÞs

3;b

� �
þ �F

ðkÞj
3 þ DðkÞj

3

ð2:13Þ
where
DðkÞj
a ¼

fa ½u�ð1Þ; ½T �ð1Þ; ½m�ð1Þ
� �

pð1Þj xð2Þ3

� �
� ra3 xð1Þ3

� �
pð1Þj xð1Þ3

� �
for k ¼ 1

fa ½u�ðkþ1Þ
; ½T �ðkþ1Þ

; ½m�ðkþ1Þ
� �

pðkÞj xðkþ1Þ
3

� �
� fa ½u�ðkÞ; ½T �ðkÞ; ½m�ðkÞ

� �
pðkÞjðxðkþ1Þ

3 Þ
for k ¼ 2; . . . ;N � 1

ra3 xðNþ1Þ
3

� �
pðNþ1Þj xðNþ1Þ

3

� �
� fa ½u�ðN�1Þ

; ½T �ðN�1Þ
; ½m�ðN�1Þ

� �
pjðN�1Þ xðNÞ

3

� �
for k ¼ N

8>>>>>><>>>>>>:
ð2:14aÞ

DðkÞj
3 ¼

f3 ½u�ð1Þ; ½T �ð1Þ; ½m�ð1Þ
� �

pð1Þj xð2Þ3

� �
� r33 xð1Þ3

� �
pð1Þj xð1Þ3

� �
for k ¼ 1

f3 ½u�ðkþ1Þ
; ½T �ðkþ1Þ

; ½m�ðkþ1Þ
� �

pðkÞj xðkþ1Þ
3

� �
� f3 ½u�ðkÞ; ½T �ðkÞ; ½m�ðkÞ

� �
pðkÞj xðkþ1Þ

3

� �
for k ¼ 2; . . . ;N � 1

r33 xðNþ1Þ
3

� �
pðNþ1Þj xðNþ1Þ

3

� �
� f3 ½u�ðN�1Þ

; ½T �ðN�1Þ
; ½m�ðN�1Þ

� �
pjðN�1Þ xðNÞ

3

� �
for k ¼ N

8>>>>>>>>><>>>>>>>>>:
ð2:14bÞ
and where rizjz1 and rizjzN+1
are the applied stresses at the top and bottom surfaces of the plate. The resulting

local equations of motion can incorporate any general ICMs in a unified fashion without the need for
reformulation.

The above mechanical development is a generalization of previous work (Williams, 1999). In particular,
the use of the more generalized displacement expansion in Eq. (2.1) has resulted in more general forms for
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the equations of motion and the associated boundary conditions. This generalization is reflected as differ-
ences in the governing equations compared to those present in previous work. Furthermore, the presence of
TDMC results in more complicated functional dependencies in the governing equations. These functional
dependencies have been explicitly emphasized in the interfacial jump terms, Eqs. (2.12) and (2.14).

2.4. Energy equations

This portion of the formulation makes use of the pointwise energy equation (Weitsman, 1987)
qcv _T þ qi;i �
orij

oT
T ð_�ij � _�IijÞ � T ~sþ o~l

oT

� �
_mþ ~l;i þ T~s;i þ T ;i~s

� �
fi � grij _�

I
ij ¼ 0 ð2:15Þ
where the strains are given by Eq. (2.5), q is the material density, cv is the specific heat at constant volume, qi
is the heat flux components, _�Iij is the inelastic strain rate, ~s is the entropy density of the solute, ~l is the inter-
nal energy of the solute, fi is the solute flux components, and g is the partitioning factor for the inelastic
work conversion to heat. The underlined terms in Eq. (2.15) represent the effects of solute concentration
on the energy. This form for the energy equation is derived using a Helmholtz function which is consistent
with displacement and temperature based formulations. The above equation directly introduces coupling
effects between the deformations, the temperature, and the solute concentration.

The form of the energy equation without diffusional effects is given by ignoring the underlined terms
(Allen, 1991). The corresponding linearly coupled variational principle of the energy equation (obtained
by replacing T in the third term with TR where TR is some constant reference temperature) is given by
(Gilat, 1996). Different variational principles for the energy equation are given by Ben-Amoz (1965), Askar
Altay and Cengiz Dokmeci (1996), Li (1992), and Herrman (1963).

Since there do not seem to be any variational principles for the energy equation that incorporate solute
effects the method of moments has been used to derive the following system of governing equations for the
energy effects
Q
a
b;b þ H

a � F
a þ C

ja _H
j þ
XN
k¼1

bC ðkÞba _h
ðkÞb � �A

a þ �A
aI � _W

a

� B
jca

Hj _S
c �
XN
k¼1

�B
ðkÞbca

hðkÞb _S
c �
XN
k¼1

bBðkÞjda
Hj _sðkÞd �

XN
k¼1

eBðkÞbda
hðkÞb _sðkÞd

þ P
a þ ðV ja þ X

jaÞHj þ
XN
k¼1

ðeV ðkÞba þ eX ðkÞbaÞhðkÞb þ Y
ja
a Hj

;a þ
XN
k¼1

eY ðkÞba
a hðkÞb

;a

¼ 0 ð2:16aÞ

bQðkÞb
b;b þ bH ðkÞb � bF ðkÞb þ bC ðkÞab _H

a þ eC ðkÞjb _h
ðkÞj � eAðkÞb þ eAðkÞbI � _eW ðkÞb

� �b
ðkÞacb

Ha _S
c � �b

ðkÞjcb
hðkÞj _S

c � b̂
ðkÞadb

Ha _sðkÞd � ~b
ðkÞjdh

hðkÞj _sðkÞd

þ eP ðkÞb þ ðeV ðkÞab þ �X
ðkÞabÞHa þ ðbV ðkÞjb þ bX ðkÞjbÞhðkÞj þ eY ðkÞba

a Ha
;a þ bY ðkÞjb

hðkÞj
;a

¼ 0 ð2:16bÞ
where the ranges for the superscripts are implied. The definitions used in Eq. (2.16) are given in Appendix
A. Again, the underlined terms represent diffusional effects. Upon elimination of the diffusional effects,
Eq. (2.16) can be seen to be represent variationally consistent governing energy equations. Eq. (2.16a) is



1474 T.O. Williams / International Journal of Solids and Structures 42 (2005) 1465–1490
associated with the global temperature effects, Ha, and these equations can be considered to represent
‘‘smeared’’ energy equations for the plate. Eq. (2.16b) are related to the local temperature effects, h(k)b,
and, thus, correspond to the local energy equations. While each of these different types of equations has
a particular length scale interpretation it must be noted that these equations exhibit coupling over all of
the length scale effects. This is discussed more explicitly in the next section.

The essential thermal boundary conditions are given by the specification of
Ha; hðkÞb on oX3 ð2:17Þ

The natural thermal boundary conditions on the vertical surfaces of the plate are given by
Q
r
a ¼ Q

�r
a ;

bQðkÞs
a ¼ bQ�ðkÞs

a oX4 ð2:18Þ
where oX = oX3 + oX4 and Q
�r
a and bQ�ðkÞs

a are known flux quantities. It is noted that the thermal boundary
conditions, Eqs. (2.17) and (2.18), are consistent with those that would be derived from a variational anal-
ysis upon the elimination of the diffusional effects.

The local energy equations, Eq. (2.16b), are coupled through the interfacial constraints on the thermal
effects. The temperature jumps due to interfacial discontinuities are given by Eq. (2.10c). The corresponding
thermal flux conditions at the interface are
qðkþ1Þ
3

���
xðkþ1Þ
3

¼ qðkÞ3

���
xðkþ1Þ
3

¼ qðkÞI3 ð2:19Þ
where qðkÞI3 is the thermal flux at the kth interface.

A thermal ICM relates the field jumps to the thermal flux across an interface (Boley and Wiener, 1985).
The general functional form for such a relation is given by
q3 ¼ eð½u�; ½T �; ½m�Þ ð2:20Þ
In general, the thermal ICMs are nonlinear and coupled relations. The response curve of the above relation
exhibits similar characteristics as observed in the mechanical ICM, Fig. 2.

The existence of the thermal ICM can be used to simplify the local energy equations. Utilizing Eqs.
(2.10c), (2.19) and (2.20) the thermal flux across an interface, qðkÞI3 , can be expressed directly in terms of
the field jumps across an interface. Substituting this result into Eq. (2.16b) gives
bQðkÞb
b;b þ dðkÞb � bF ðkÞb þ bC ðkÞab _H

a þ eC ðkÞjb _h
ðkÞj � eAðkÞb þ eAðkÞaI � _~W

ðkÞb
� �b

ðkÞacb
Ha _S

c � �b
ðkÞjcb

hðkÞj _S
c

� b̂
ðkÞadb

Ha _sðkÞd � ~b
ðkÞjdh

hðkÞj _sðkÞd þ eP ðkÞb þ ð~V ðkÞab þ �X
ðkÞabÞHa þ ðbV ðkÞjb

þ bX ðkÞjb
ÞhðkÞj

þ ~Y
ðkÞba
a Ha

;a þ bY ðkÞjb
hðkÞj
;a ¼ 0 ð2:21Þ
where
dðkÞj ¼

e ½u�ð1Þ; ½T �ð1Þ; ½m�ð1Þ
� �

gð1Þj xð2Þ3

� �
� q3 xð1Þ3

� �
gð1Þj xð1Þ3

� �
for k ¼ 1

e ½u�ðkþ1Þ
; ½T �ðkþ1Þ

; ½m�ðkþ1Þ
� �

gðkÞj xðkþ1Þ
3

� �
� e ½u�ðkÞ; ½T �ðkÞ; ½m�ðkÞ
� �

gðkÞj xðkþ1Þ
3

� �
for k ¼ 2; . . . ;N � 1

q3 xðNþ1Þ
3

� �
gðNþ1Þj xðNþ1Þ

3

� �
� e ½u�ðN�1Þ

; ½T �ðN�1Þ
; ½m�ðN�1Þ

� �
gðN�1Þj xðNÞ

3

� �
for k ¼ N

8>>>>>><>>>>>>:
ð2:22Þ
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where q3ðx
ð1Þ
3 Þ and q3 xðNþ1Þ

3

� �
are the applied thermal fluxes at the top and bottom surfaces of the plate. As

was the case for the mechanical ICMs effects, the above form of the governing local energy equations can
incorporate any thermal ICM in a unified fashion without any reformulation.

The energy equation portion of the development represents a substantial generalization of existing plate
theories that consider the effects of coupled thermal and mechanical fields. This generalization has intro-
duced new types of coupling effects between the fields. These new coupling effects are discussed in more de-
tail below (Section 3).

2.5. Solute conservation equations

The pointwise equation for the conservation of solute (solute diffusion equation) is given by (Weitsman,
1987; Sih et al., 1986)
_m ¼ �fi;i ð2:23Þ

While the above equation does not directly exhibit coupling between the deformation, temperature, and
solute concentration fields such coupling is implied. The explicit type of coupling between the different fields
is introduced by the constitutive relations chosen to related the different fields. This will be discussed in
more detail at the end of this section.

Since no variational principle for this equation exists the method of moments is used to obtain the gov-
erning equations for the plate theory. Multiplying Eq. (2.23) by Lc and integrating through the thickness of
the plate gives
k
j
c _S

j þ
XN
k¼1

~k
ðkÞdc

_sðkÞd ¼ �f
c
a;a � xc þ n

c ð2:24Þ
where the definitions for the resultants are given in Appendix A. This equation represents the global equa-
tions governing the solute diffusion through the plate.

The local plate diffusion equations are obtained by multiplying Eq. (2.23) by l(k)d and integrating through
the thickness. After manipulation the following equations are obtained
~k
d
c _S

d þ
XN
k¼1

k̂
ðkÞjd

_sðkÞj ¼ �f
ðkÞd
a;a � x̂ðkÞd þ n

ðkÞd ð2:25Þ
Eq. (2.25) is related to the s(k)d terms and can be considered local diffusional equations for the layers in a
laminated plate.

The essential thermal boundary conditions for the diffusion component of the theory are given by the
specification of
Sc; sðkÞd on oX5 ð2:26Þ

The natural diffusional boundary conditions on the vertical surfaces of the plate are given by
�f
c
a ¼ �f

�c
a ; f̂

ðkÞd
a ¼ f̂

�ðkÞd
a oX6 ð2:27Þ
where oX = oX5 + oX6 and �f
�c
a and f̂

�ðkÞd
a are known mass flux quantities.

Similar to the previous results, the effects of delaminations on the diffusional response of the plate are
incorporated into the theory in a unified fashion through the use of ICMs. The diffusional ICM is function-
ally given by
f3 ¼ hð½u�; ½T �; ½m�Þ ð2:28Þ
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The diffusional ICM is in, general, coupled to the mechanical, thermal, and solute effects.
The local diffusional plate equations are simplified using Eq. (2.28) in the same fashion as for the local

equations of motion and the local energy equations. The final result is given by
~k
d
c _S

d þ
XN
k¼1

k̂
ðkÞjd

_sðkÞj ¼ ��f
ðkÞd
a;a � dðkÞd þ n

ðkÞd ð2:29Þ
where
dðkÞj ¼

h ½u�ð1Þ; ½T �ð1Þ; ½m�ð1Þ
� �

lð1Þj xð2Þ3

� �
� f3 xð1Þ3

� �
lð1Þj xð1Þ3

� �
for k ¼ 1

h ½u�ðkþ1Þ
; ½T �ðkþ1Þ

; ½m�ðkþ1Þ
� �

lðkÞj xðkþ1Þ
3

� �
� h ½u�ðkÞ; ½T �ðkÞ; ½m�ðkÞ
� �

lðkÞj xðkþ1Þ
3

� �
for k ¼ 2; . . . ;N � 1

f3 xðNþ1Þ
3

� �
lðNþ1Þj xðNþ1Þ

3

� �
� h ½u�ðN�1Þ

; ½T �ðN�1Þ
; ½m�ðN�1Þ

� �
lðN�1Þj xðNÞ

3

� �
for k ¼ N

8>>>>>>>><>>>>>>>>:
ð2:30Þ
where f3 xð1Þ3

� �
and f3 xðNþ1Þ

3

� �
are the applied mass fluxes at the top and bottom surfaces of the plate. Eqs.

(2.25) and (2.30) are completely general unified results that can be used with any form of diffusional ICM

without the need for reformulation.

The author is unaware of any previous plate theories that couple solute diffusional effects with the kin-
ematic and thermal behavior in a plate.
2.6. Formulation summary

The fundamental unknowns of the theory are the global displacement terms Ur
a and Up

3, the local dis-
placement terms lðkÞs

a and lðkÞq
3 , the global temperature terms Ha, the local temperature terms h(k)b, the glo-

bal solute effects Sc, and the local solute terms s(k)d.
The governing system of equations for the kinematic, thermal, and solute unknowns in the theory are the

global equations of motion, Eqs. (2.7a) and (2.7b), the local equations of motion, Eq. (2.13), the global and
local energy equations, Eqs. (2.16a) and (2.21), and the global and local solute diffusion equations, Eqs.
(2.24) and (2.29). The mechanical boundary conditions are given by Eqs. (2.8) and (2.9). The thermal
boundary conditions are given by Eqs. (2.17) and (2.18). The corresponding solute diffusion boundary con-
ditions are given by Eqs. (2.26) and (2.27). The interfacial constraints are incorporated in a unified fashion
through Eq. (2.14) (for mechanical effects), Eq. (2.22) (for thermal effects), and Eq. (2.30) (for diffusional
effects).

The above formulation is independent of any particular set of constitutive relations for the field varia-
bles. In general the constitutive relations will exhibit dependencies on all three fundamental fields of the
theory. For example, the mechanical behavior of a material might be assumed to be governed by a Hook-
ean type of constitutive model based on superposition of strain effects
rij ¼ Cijkl �kl � aklDT � bklDm� �Ikl
� �

ð2:31aÞ
where aklDT and bklDm represent thermal and solution induced strain effects and �Ikl represents the inelastic
strain effects due to history-dependent deformations at the material level. Further discussions of mechanical
constitutive modeling concepts are given by Malvern (1969), Lemaitre and Chaboche (1990), Christensen
(1982), and Khan and Huang (1995) among others. Examples of potential constitutive relations for the
thermal and mass fluxes are given by an anisotropic generalization of equations proposed by Weitsman
(1987) and Sih et al. (1986)
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qi ¼ �Kð1Þ
ij T ;j � Kð2Þ

ij m;j � Kð3Þ
ij �kk;j

fi ¼ �F ð1Þ
ij T ;j � F ð2Þ

ij m;j � F ð3Þ
ij �kk;j

ð2:32Þ
where KðnÞ
ij and F ðnÞ

ij are material parameters.
It is noted that the current theory could be extended to the analysis of sublaminates where the ‘‘global’’

component of the field variables are associated with the sublaminate behavior and the local components of
the displacement field continue to represent the layer behavior. In this situation, the displacement, temper-
ature, and solute jumps are given by
½ua�ðSLIÞ ¼ Ur
aP

rðxðSLIþ1Þ
3 Þ þ ls

ap
sðxðSLIþ1Þ

3 Þ
� �ðSLIþ1Þ

� Ur
aP

rðxðSLIþ1Þ
3 Þ þ ls

ap
sðxðSLIþ1Þ

3 Þ
� �ðSLIÞ

½u3�ðSLIÞ ¼ Up
3P

pðxðSLIþ1Þ
3 Þ þ lq

3p
qðxðSLIþ1Þ

3 Þ
� �ðSLIþ1Þ

� Up
3P

pðxðSLIÞ3 Þ þ lq
3p

qðxðSLIþ1Þ
3 Þ

� �ðSLIÞ
½T �ðSLIÞ ¼ HaGaðxðSLIþ1Þ

3 Þ þ hbgbðxðSLIþ1Þ
3 Þ

� �ðSLIþ1Þ
� HaGaðxðSLIþ1Þ

3 Þ þ hbgbðxðSLIþ1Þ
3 Þ

� �ðSLIÞ
½m�ðSLIÞ ¼ ScLcðxðSLIþ1Þ

3 Þ þ sdldðxðSLIþ1Þ
3 Þ

� �ðSLIþ1Þ
� ScLcðxðSLIþ1Þ

3 Þ þ sdldðxðSLIþ1Þ
3 Þ

� �ðSLIÞ
ð2:33Þ
where xðSLIÞ3 are the positions of the sublaminate interfaces. The traction/thermal/mass flux continuity con-
ditions and the ICMs are also applied at these interfaces. Otherwise the formulation remains the same.
3. Theoretical implications

A number of theoretical implications to the currently proposed formulation are discussed in this section.
The first issue to be considered in this section is the existence of coupling between the different length

scale effects in the displacement, temperature, and solute fields. The strain–displacement relations, Eq.
(2.4), have two different types of coupling effects between the global and local components of the displace-
ment expansions. The global and local components of the expansions appear in a linear fashion in all of the
strain components. The inplane strain components introduce products of the global and local displacement
terms due to the geometric nonlinearity assumptions. These products occur in the form of mixed products
(global and local effects) and nonlinear (just global or just local effects) of both the global and local effects.

As discussed previously the equations of motion, Eqs. (2.7a), (2.7b) and (2.13), can be associated with
global and local effects, respectively. However, these equations exhibit a number of strong coupling phe-
nomena between the different length scales in the different fields. Explicitly, linear coupling occurs due
to the presence of time derivatives of both the global and local displacement effects in these equations.
The coupling phenomena present in the strain–displacement relations are directly introduced into the def-
initions of the resultants, Eq. (2.7), and, hence, into the equations of motion through the constitutive rela-
tions for the layers. These coupling effects take the form of linear, quadratic, and cubic products of the
global and local displacement effects. The presence of thermal and solute terms in the constitutive relations
introduces several types of coupling. Consideration shows that the different length scale temperature and

solute effects appear linearly in the resultants N
j
ab, R

j
a3, �N

j

3a, �R
j

33, bN ðkÞj
ab , bRðkÞj

a3 , �N
ðkÞj
3a , and �R

ðkÞj
33 (although the

weighting of these terms is due to mixed products of the global/local displacement expansion functions
and the global/local temperature/solute expansion functions). Nonlinearly coupled terms between the dif-
ferent temperature and solute effects and the displacement effects are also introduced into the equations of
motion by the constitutive relations. These effects occur in the form of higher order products of the func-
tions Pr, Pp, Ga, Lc, p(k)s, p(k)q, g(k)b, and l(k)d in the previously mentioned resultants. Further nonlinear cou-
pling effects are introduced by the terms �M

pj

abU
p
3;b, M ðkÞqj

ab lðkÞq
3;b , M ðkÞjp

ab Up
3;b, and �M

ðkÞjq
ab lðkÞq

3;b in the form of
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products of the Uj
i , lðkÞj

i , Ha, h(k)b, Sc, and s(k)d as well as higher order products of the expansion functions
Pr, Pp, Ga, Lc, p(k)s, p(k)q, g(k)b, and l(k)d. Finally, the interfacial terms in the equations of motion; DðkÞ

i , are,
in general, coupled functions of the kinematic, thermal, and solute fields in the plate.

The same types of coupling effects between the different global and local fields exist in the governing
equations for energy, Eqs. (2.16a) and (2.21), and solute, Eqs. (2.24) and (2.29), as well as in the boundary
conditions.

Obviously the above discussion emphasizes the fact that the existence of two characteristic length scales
impacts all aspects of the formulation. These coupling effects appear to be unique to the current formula-
tion. The coupling phenomena are important since they can be used to enhance the computational
efficiency of the theory while maintaining good accuracy. In particular, Williams (1998, 2000) has shown
that accurate predictions for the response of cross ply plates subjected to cylindrical bending can be ob-
tained using a first order (linear in x3) expansion for the global displacements and third-order expansions
for the local expansions. More importantly, these results indicated that the proposed multilength scale the-
ory can be more computationally efficient than a similar fully discrete layer analysis. Increased accuracy for
the predictions of the fields within a plate can be obtained by increasing the orders of either the global or
local fields (Williams, 1998, 2000). This, in turn, implies that the local history-dependent behavior can
(potentially) be modeled with any desired accuracy. The expansions used for the local and global terms
in the different fields need not be of the same order or type. The number of potential combinations for these
expansions is infinite.

If the theory is linearized (i.e. geometrically linear strains are used) many of the above coupling effects
remain.

Associated with the ability to tailor the expansions for the different fields is the ability to transition
smoothly through different length scales without any modification of the theory. This fact implies that
by appropriate specialization of the displacement, temperature, and solute expansions all currently availa-
ble displacement (linear or von Karman strain) based, plate theories can be obtained as a subset of the cur-
rent theoretical framework. This is discussed in the next section.

The next issue that has several important implications is the use of interfacial constitutive models to
model the influence of delaminations on the plate response. The theoretical framework has been developed
using general functional forms for the ICMs. Thus, any particular ICM can be utilized in the theory with-
out the need for any reformulation. ICMs allow the effects of delaminations to be incorporated into the
theory in an internally consistent or unified fashion in terms of the fundamental unknowns of the theory;
namely, the local displacement, temperature, and solute effects. No additional unknowns are introduced
into the theory by the presence of delaminations and, thus, the computation efficiency is maintained.
The use of ICMs does not require any a priori assumptions about the extent or location of cracking/delam-
ination. Therefore, the theory can be used to analyze the initiation, growth, and subsequent interaction of
delaminations in plates under in service conditions. Furthermore, ICMs naturally incorporate no interpen-
etration constraints by requiring that the displacements jumps under compression are zero. In rapid loading
situations the ICMs can be implemented in an explicit fashion eliminating the need for iterative solution
techniques (as opposed to virtual crack methodologies where iterative schemes are required). Finally, in sit-
uations where thin interlaminar regions are expected to significantly influence the response of a laminate
ICMs can be used to model the response of these layers without introducing additional layers into the com-
putational effort.

The theory allows for buckling by accounting for geometric nonlinearities. Geometric nonlinearity is
introduced through the use of von Karman type assumptions. In general, for composite materials, it is felt
that this assumption is sufficiently accurate.

The above capabilities result in a comprehensive, unified theory that can accurately and efficiently ana-
lyze the mutual influence of thermo-mechanical-diffusional coupling, delamination, global and local/sub-
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laminate buckling, and localized history-dependent mechanisms such as viscoplasticity and damage on the
response of laminated or homogeneous plates.
4. Specializations to existing theories

The proposed theory represents a unified framework for the development of different types of plate the-
ories. To illustrate this point this section shows how existing displacement based, variationally consistent
plate theories and their thermo-mechanical counterparts (when available) can be obtained via appropriate
specializations of the framework.
4.1. Specializations to existing mechanical theories

In the following discussion in this section thermal and diffusional coupling effects are ignored. Thus, the
energy equations, Eqs. (2.16a) and (2.21), and the solute conservation equations, Eqs. (2.24) and (2.29), are
satisfied identically by assuming Ha = Ga = h(k)b = g(k)b = 0 and Sc = Lc = s(k)d = l(k)d = 0.

Frequently, plate theories assume that there is no though-the-thickness variation in the transverse dis-
placement, i.e. transverse inextensibility. This specialization is obtained from the current framework by
using P0 = 1 and Uj

3 ¼ Pj ¼ 0 for j > 0 and lðkÞq
3 ¼ 0 for all q.

The simplest types of plate theories are those based on the concept of an equivalent or ‘‘smeared’’ plate.
In these theories a laminated plate is replaced by an equivalent plate with smeared properties, i.e. no distinct
between lamina is considered. Particular examples of these are considered next.

The simplest ‘‘smeared’’ plate theory is the so-called classical laminated plate theory (CLPT). Reddy
(1997) presents the variationally based development of this theory. Whitney (1987) develops the govern-
ing equations using the method of moments. The deformation field for this theory is obtained from
the current analysis by using the transverse inextensibility restrictions (above) in conjunction with the fol-
lowing restrictions for the inplane displacements; P0 = 1, P1 = x3, P

r = 0 for r > 1, U 1
a ¼ oau3 ¼ �oaU 0

3,
and lðkÞs

a ¼ pðkÞs ¼ 0 for all s. In order to obtain the correct forms of the governing equations it
must be recognized that the linear terms in the inplane displacement expansions do not represent
independent variables. The necessary manipulations of Eqs. (2.7a) and (2.7b) to obtain the CLPT
governing equations are given in Appendix B. A wide variety of results generated with this theory
(and the correlations with exact solutions where applicable) are given by Reddy (1997) and Whitney
(1987).

The simplest ‘‘smeared’’ transverse shear deformation theory is first order shear deformation theory
(FSDT). The variationally derived linear and von Karman based strain measure formulations of this theory
are presented by Reddy (1997). The corresponding vectorial or method of moments developments are pre-
sented by Whitney (1987). This theory can be obtained from the current framework by using the above
restrictions for transverse inextensibility and the following restrictions on the inplane displacements ua;
lðkÞs

a ¼ pðkÞs ¼ 0 for all s and P0 = 1 and P2 = x3. The appropriate forms of the governing equations given
in the above references directly correspond to the equations provided by the current theory. Extensive re-
sults obtained from this theory for static bending, buckling, and vibration and the correlation with exact
solutions are given by Reddy (1997).

The next family of ‘‘smeared’’ plate theories are the third order theories. This type of theory represents
the lowest order of the so-called higher order shear deformation theories (HSDT). One of the first proposed
theories of this type was developed by Lo et al. (1977a,b). The specializations required to obtain the theory
of Lo et al. are P0 = 1, P1 = x3, P

2 ¼ x23, P
3 ¼ x33 and Pr = 0 for r > 3, p(k)s = 0 for all s, P0 = 1, P1 = x3,

P2 ¼ x23, and Pp = 0 for p > 2, and p(k)q = 0 for all q. The governing equations obtained in the theory of Lo
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et al. directly correspond to the equations provided by current theory. Results comparing the predictive
capabilities of this third order theory with exact results are given by Lo et al.

Reddy (1989, 1990) shows how all theories up to and including third order, displacement based, theories
can be obtained from a single third order theory through appropriate change of variables. Geometric non-
linearity is introduced through the use of von Karman type strain measures. The appropriate specializa-

tions of the current theory are given by (using Reddy�s notation); P0 = 1, P1 = x3, U 1
a ¼ U 0

3;a,

P 2 ¼ x3 � 4
3h2

x33, U 2
a ¼ b/̂a, P 3 ¼ 1

2
x23 � kw3;a, P 4 ¼ 4

3h2
x33, U 4

a ¼ �bws;a, P 5 ¼ 1
3
x33, U 5

a ¼ �ch3;a, P0 = 1,

U 0
3 ¼ bws, P1 = 1, U 1

3 ¼ awb, P2 = x3, U
2
3 ¼ kw3, P2 = , U 3

3 ¼ kh3, lðkÞs
a ¼ pðkÞs ¼ 0, and lðkÞq

3 ¼ pðkÞq ¼ 0.
The constants a, b, k, and c are tracers used to reduce the general third order formulation to specific the-
ories. The necessary manipulations required to obtain Reddy�s equations (1990) are given in Appendix C.

A more advanced type of theory than the ‘‘smeared’’ plate theories are the ‘‘zig-zag’’ theories. These the-
ories satisfy traction and displacement continuity conditions in an a priori fashion. A partial review and
discussion of some of the limitations of this type of theory is given by Averill and Yip (1996). A nonlinear
(in the von Karman sense) version of this type of theory is given by Di Sciuva (1986). To obtain Di Sciuva�s
theory from the current formulation the specializations given by constant through-the-thickness transverse
displacement are employed. The following specializations are also used P0 = 1,
P 1 ¼ x3 þ

PN�1
k¼1 a

ðkÞ
a ðx3 � xðkÞ3 ÞHðx3 � xðkÞ3 Þ where Hðx3 � xðkÞ3 Þ is the Heaviside function, aðkÞa (Eq. (6) of Di Sci-

uva (1986)) are constants related to the relative properties of the lamina, and lðkÞs
a ¼ pðkÞs ¼ 0 for the inplane

displacements are used. The governing equations given by Di Sciuva are obtained directly from Eqs. (2.7a)
and (2.7b). Other versions of ‘‘zig-zag’’ theories can be obtained in a similar manner.

Soldatos (1995) has used the method of moments/vectorial formulation to develop a general, variation-
ally consistent, ‘‘smeared’’ plate theory. The theory is based on the use of linear strains. He has shown how
simplification of this theory can be used to obtain existing variationally consistent ‘‘smeared’’ plate theories.
To obtain Soldatos� variationally consistent formulation from the current theory the following specializa-
tions are used; pðkÞs ¼ lðkÞs

a ¼ pðkÞq ¼ lðkÞq
3 ¼ 0, P1 = x3, U

1
a ¼ �U 0

3;a, and the other global expansion func-
tions correspond to the functions /2i and /2i+1 discussed by Soldatos (1995).

Discrete layer theories (Reddy, 1987; Williams and Addessio, 1997) represent one of the most accurate
types of laminated plate theories. These theories directly model the response of each lamina in a plate and,
subsequently, couple them through interfacial constraints. Reddy (1997) summarizes existing discrete layer
theories, discusses how his discrete layer theory can be specialized to obtain existing linear theories, and
provides results obtained from his formulation. Reddy�s discrete layer displacement based theory can be
obtained from the current formulation by using Pr = 0 and Pp = 0 and using any desired form for the
p(k)s and p(k)q subject to the requirement that p(k)s(x3 = 0) = p(k)q(x3 = 0) = 0. The identification of the
resulting equivalence of the governing equations given by Reddy (1987) and Eqs. (2.6a) and (2.6b) is readily
apparent.

While the development thrust of the theories of Soldatos (1995) and Reddy (1987) were concerned pri-
marily with ‘‘smeared’’ or discrete layer theories, respectively, consideration of the theories shows that they
are, in fact, equivalent ‘‘single length scale’’ theories. In particular, the displacement fields in both theories
can be associated with the behavior of either a layer within a laminate or with the entire laminate (but not
both simultaneously). The resulting analysis is dependent on the chosen length scale. For example, by iden-
tifying Soldatos� functions / as associated with a lamina/layer length scale and introducing appropriate
interfacial constraints then the theory proposed by Reddy (1987) can be obtained. Soldatos (1993) discusses
in more detail the modifications of his theory necessary to obtain the Lagrange function based, layerwise
variant of Reddy�s theory. Conversely, identifying Reddy�s layerwise functions / and w as associated with
the entire laminate thickness and eliminating the interfacial constraints then Soldatos� formulation (1995)
can be obtained. These theories cannot consider multilength scale effects. It is worth noting that the re-iden-
tification of length scales necessary to convert the theories of Reddy and Soldatos to either discrete or
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‘‘smeared’’ analyses are not necessary within the current theoretical framework since the current theory
considers the pertinent length scales in a unified fashion.

The final type of mechanical theory considered in this section are the so-called ‘‘variable kinematic (VK)
models’’ (Reddy, 1997). A summary of the literature for these types model is presented by Reddy (1997).
Reddy�s VK model can be obtained from the current theoretical framework by ignoring coupled terms in
the governing equations given above (i.e. by assuming that the global governing equations are only func-
tions of the terms in the global portion of the displacement expansion and the local governing equations are
only functions of the local displacement expansion terms). The resulting equations are coupled (as discussed
by Reddy) by eliminating the displacements at some number (given by the order of the global theory used)
of arbitrary nodes for the local theory.

The above discussion has not exhaustively addressed the necessary specializations required to obtain
every currently available, mechanical plate theory. However, the outlined specializations have, in most
cases, considered the most general plate theories of different classes currently available. The relationships
between these different general theories and simpler plate theories are outlined in the cited references. In
the cases where specific theories where considered the relation to other theories in the associated class of
theories is clear and, thus, the necessary specializations required to obtain these theories are simple varia-
tions of the outlined specializations. In light of the above comments it can be seen that any currently avail-
able displacement based, linear or von Karman strain based, variationally consistent, mechanical plate
theory can be obtained as a specialization of the current framework.

4.2. Specializations to existing thermo-mechanical theories

In the following discussion it is assumed that diffusional effects are null. This specialization is obtained
by using Sc = Lc = s(k)d = l(k)d = 0.

A review of work carried out that has considered the influence of specified temperature fields on the flex-
ure, buckling, and vibration response of both laminated and homogeneous plates is given by Tauchert
(1991). The results of the referenced works can be obtained by using the same functional form for the global
temperature field terms (Ha and Ga) as given in a particular work, requiring that the local temperature ef-
fects be zero (h(k)b = g(k)b = 0), and ignoring the energy portion of the current formulation (no evolution of
the temperature field). It is noted that the governing equations of these types of studies directly correspond
to the above mechanical theories where temperature is considered within the context of the constitutive
relations and superposition of strain effects is used (c.f. Jonnalagadda et al., 1993). Thus, the relations be-
tween these types of theories and the current framework is evident in light of the relations given in Section
4.1.

A recent work by Praveen and Reddy (1998) on the response of functionally graded plates is an example
of a one-way coupled analysis. In this work the coupling effects between the mechanical and thermal re-
sponses in the energy equation are ignored. Within the current theory this amounts to using
Q
a
b;b þ H

a ¼ 0 ð4:1Þ
as the energy equation. This equation is solved for the temperature distribution within the plate. The tem-
perature field (which does not evolve) is subsequently used in the analysis of the deformation of the plate.
The mechanical aspect of work is based on Reddy�s third order mechanical theory (see above).

A fully coupled thermo-mechanical analysis has been developed by Gilat and Aboudi (1996) for cylin-
drical bending of laminated plates. The lamina material behavior was modeled using Hookean constitutive
relations and superposition of strain effects. The mechanical component of the work is based on the von
Karman version of Reddy�s third order theory (1984, 1990) for zero transverse normal stress and accounts
for the presence of initial geometric imperfections. The specializations of the displacement field, Eq. (2.1),
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required to obtain this theory are given by P0 = 1, P 1 ¼ x3 � bk1x33, P
2 ¼ bk1x33, U

2
a ¼ �U 0

3, P
j = 0 for j P 3,

P0 = 1, U 0
3 ¼ U 0

3 þ U 30 Pj = 0 for j P 1, pðkÞs ¼ lðkÞs
a ¼ 0, and pðkÞq ¼ lðkÞq

3 ¼ 0 where U30 is the initial
(known) geometric imperfection in the plate. The zero transverse normal stress assumption used in the
development of the equilibrium equations of the theory requires that �R

j

33 ¼ 0 be used directly in Eq.
(2.7b) and that plane stress reduced stiffnesses be used in the evaluation of the constitutive relations.
The cylindrical bending assumptions require that differentiation with respect to x2 be zero. Subject to these
restrictions the discussion concerning the development of a general third order plate theory is valid. The
temperature field used by Gilat and Aboudi is initially assumed to have the form
DT ðxa; x3; tÞ ¼ H0 þ H1x3 þ H2x23 þ H3x33 ð4:2Þ

Satisfying either heat flux or the temperature boundary conditions on the top and bottom surfaces in an

a priori fashion leads to a temperature field of the form
DT ðxa; x3; tÞ ¼ H0 1þ s2x23
� �

þ H1 x3 þ s4x34
� �

þ s1x23 þ s3x44 ð4:3Þ
where si are known functions of the boundary conditions. The pertinent forms of the energy equations
obtained by Gilat and Aboudi where derived using the method of moments. The assumptions of zero
transverse normal strain and stress in conjunction with a Hookean constitutive relation can be used to
obtain
_�I33 ¼
Cab33

C3333

� �
_�ab � aab

_T � _�Iab

� �
� a33

_T ð4:4Þ
Using these results the relationship
CijklaklT _�ij � _�Iij

� �
¼ Tdab _�ab � _�Iab

� �
þ d2

33T _T ð4:5Þ
is obtained. The dij are relations between the material properties and the coefficient of thermal expansion
obtained from the constitutive relation for the normal transverse stress. Substituting Eq. (4.5) into the def-
initions of aa and aaI shows that these resultant terms are functions of the Uj

i and _T (i.e. the functional rela-
tion is obtained aa � aaI ¼ ba

1ðUj
aÞ þ ba

2
_T 0 þ ba

3
_T 1). Using the following identifications between the terms in

the energy equations defined by Gilat and Aboudi and the current framework
G11 ¼ C
00 þ b02

G12 ¼ G21 ¼ C
10 þ b03 ¼ C

01 þ b12

G22 ¼ C
11 þ b13

S1 ¼ Q
0

1;1 þ h
0 � f

0 þ b01 � _W
0

S2 ¼ Q
1

1;1 þ h
1 � f

1 þ b11 � _W
1

ð4:6Þ
the equivalence between the energy equations becomes apparent.
A fully coupled thermoelastic discrete layer analysis has been developed by Baczynski (1991) for the per-

fectly bonded plates. The analysis is derived using a theory based on internal constraints which is consistent
with a variational analysis. The variation through the thickness of the fields in the individual layers is as-
sumed to be given by first order Lagrange polynomials. Thus, the mechanical portion of the theory is equiv-
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alent to Reddy�s discrete layer theory (1987) and the previous discussion showing the relations between
Reddy�s theory and the current framework apply to Baczynski�s theory. The energy portion of Baczynski�s
theory is based on the energy equation given in terms of internal energy rather than a Helmholtz form of
the energy equation. However, using the relations between internal energy and the Helmholtz free energy
(u = w � Ts where u is the internal energy, w is the Helmholtz free energy, T is the temperature, and s is the
entropy) and the functional relations w = /(�ij,T) and s = s (�ij,T) relating the Helmholtz free energy and
the entropy to the strain and temperature fields Baczynski�s energy equations for the plate can be directly
reduced to Eq. (2.21). See Allen (1991) for a concise discussion of the procedure. The following identifica-
tions between Baczynski�s resultants and the current theory�s resultants can subsequently be made
QðaÞ ¼ Q
a

qðaÞ ¼ F
a

dl
ðaÞ ¼ H

a

T ðaÞðbÞ 
 r _w � _�ðaÞ � C
ja _H

j þ
XN
k¼1

bC ðkÞba _h
ðkÞb � �A

a

ð4:7Þ
5. Summary and conclusion

A new type of plate theory based on a generalized formulation utilizing a distinctive multilength scale
analysis that incorporates the effects of thermo-mechanical-diffusional coupling, delamination, and geomet-
ric nonlinearity has been presented. The ability to consider this range of effects simultaneously seems to be
unique to the present theory. The inimitable multilength scale aspects of the theory are obtained through
the use of generalized two length scale expansions for the displacement, temperature, and solute fields. The
functional forms and orders of the expansions at both length scales are arbitrary subject to the constraint
that the terms in the different length scale expansions be independent functions. The theory incorporates
delamination and/or nonlinear elastic or inelastic interfacial behavior for the mechanical, thermal, and con-
centration effects in a unified fashion through the use of generalized interfacial constitutive (cohesive) rela-
tions. The use of ICMs allows the theory to analyze the influence of delamination initiation, growth, and
interaction in plates without introducing any a priori assumptions about the location or extent of the
delaminations. The resulting unified theoretical framework represents a new type/class of plate theory that
can be used to consider the general thermo-diffusionally-mechanically coupled response of laminated (or
homogeneous) plates in the presence of delaminations, buckling, and/or nonlinear material behavior.

It has been shown that appropriate specialization of the proposed framework can be used to obtain cur-
rently available variationally derived, displacement-based plate theories capable of carrying out both
mechanical and thermo-mechanical analysis of laminated plates.

While the present paper has focused on the theoretical formulation of a unified framework for the devel-
opment of plate theories capable of carrying out coupled field analyses, it is useful to give some (specula-
tive) consideration to the potential for numerical implementation of the full theory. As the applications of
laminated structures become more demanding it can be expected that coupling different aspects of the
mechanical, thermal, and diffusional response characteristics of plates will become necessary. Given the
complicated physics of such problems any tools capable of carrying out such analyses can be expected
to be equally complex. The numerical implementation of such theories can consequentially be expected
to require significant effort. The proposed theory, which seems to represent one of the few tools available
for such analyses, certainly would require this level of effort for implementation. From a computational
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efficiency perspective, as mentioned in Section 3, previous work (Williams, 1999, 2000) on the mechanical
behavior of plates indicates that the use of the multiscale analysis approach can enhance computational
efficiency as compared to single scale approaches by requiring fewer unknowns to achieve a given level
of solution accuracy. Current (unpublished) work on the mechanical behavior of laminated plates is indi-
cating that the computational savings (as compared to traditional finite element approaches) obtained from
the proposed approach for the behavior of plates subjected to static loadings continues to hold for dynamic
loading situations. At this point it can be hoped that similar results can be obtained for the coupled field
analysis represented by the current theory. Future work will consider the numerical implementation of the
proposed theory and the resulting computational requirements.
Appendix A. Resultant definitions

The following definitions have been employed in Eq. (2.7).
I
mn ¼

Z xðNþ1Þ
3

xð1Þ
3

qPmPn dx3; bI ðkÞmn
¼
Z xðkþ1Þ

3

xðkÞ
3

qpðkÞmPn d�x3; �I
mn ¼

Z xðNþ1Þ
3

xð1Þ
3

qPmPn dx3

�I
ðkÞmn ¼

Z xðkþ1Þ
3

xðkÞ
3

qpðkÞmPn d�x3; eI ðkÞmn ¼
Z xðkþ1Þ

3

xðkÞ
3

qpðkÞmpðkÞn d�x3; I�ðkÞmn ¼
Z xðkþ1Þ

3

xðkÞ
3

qpðkÞmpn d�x3

N
m
ab ¼

Z xðNþ1Þ
3

xð1Þ
3

rabPm dx3; �N
m

ab ¼
Z xðNþ1Þ

3

xð1Þ
3

rabP
m dx3

bN ðkÞm
ab ¼

Z xðkþ1Þ
3

xðkÞ
3

rabpðkÞm d�x3; �N
ðkÞm
ab ¼

Z xðkþ1Þ
3

xðkÞ
3

rabp
ðkÞm d�x3

R
m
a3 ¼

Z xðNþ1Þ
3

xð1Þ
3

ra3o3Pm dx3; �R
m

33 ¼
Z xðNþ1Þ

3

xð1Þ
3

r33o3P
m dx3

bRðkÞm
a3 ¼

Z xðkþ1Þ
3

xðkÞ
3

ra3o3pðkÞm d�x3; �R
ðkÞm
33 ¼

Z xðkþ1Þ
3

xðkÞ
3

r33o3p
ðkÞm d�x3

�M
mn

ab ¼ t
xðNþ1Þ
3

xð1Þ
3

rabP
mPn dx3; M ðkÞmn

ab ¼
Z xðkþ1Þ

3

xðkÞ
3

rabp
ðkÞmPn d�x3; �M

ðkÞmn
ab ¼

Z xðkþ1Þ
3

xðkÞ
3

rabp
ðkÞmpðkÞn d�x3

F
m
a ¼

Z xðNþ1Þ
3

xð1Þ
3

faPm dx3; �F
m

3 ¼
Z xðNþ1Þ

3

xð1Þ
3

f3Pm dx3

bF ðkÞm
a ¼

Z xðkþ1Þ
3

xðkÞ
3

fapðkÞm dx3; �F
ðkÞm
3 ¼

Z xðkþ1Þ
3

xðkÞ
3

f3pðkÞm dx3
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sm
a ¼ taPmj

xðNþ1Þ
3

þ taPmj
xð1Þ
3

¼ ra3Pmjx
ðNþ1Þ
3

xð1Þ
3

�sm
3 ¼ t3P

mj
xðNþ1Þ
3

þ t3P
mj

xð1Þ
3

¼ r33P
mjx

ðNþ1Þ
3

xð1Þ
3

ŝðkÞma ¼ tapðkÞm
��
xðkþ1Þ
3

þ tapðkÞm
��
xðkÞ
3

¼ ra3pðkÞm
��xðkþ1Þ

3

xðkÞ
3

�sðkÞm3 ¼ t3pðkÞm��
xðkþ1Þ
3

þ t3pðkÞm��
xðkÞ
3

¼ r33p
ðkÞm��xðkþ1Þ

3

xðkÞ
3

where the appropriate ranges for the superscripts m and n are implied. It is emphasized that the terms incor-
porating the p(k)s and p(k)q exist only within the kth layer.

The following definitions have been used in Eq. (2.9)
T
j
a ¼

Z xðNþ1Þ
3

xð1Þ
3

tiP j dx3; �T
j

3 ¼
Z xðNþ1Þ

3

xð1Þ
3

tiPj dx3

bT ðkÞj
a ¼

Z xðkþ1Þ
3

xðkÞ
3

tipðkÞj d�x3; bT ðkÞj
3 ¼

Z xðkþ1Þ
3

xðkÞ
3

tipðkÞj d�x3
where again the appropriate ranges for the superscripts are implied.
The following definitions have been employed in Eq. (2.16)
Q
a
a ¼

Z xðNþ1Þ
3

xð1Þ
3

qaG
a dx3; bQðkÞb

a ¼
Z xðkþ1Þ

3

zk

qag
ðkÞb d�x3

H
a ¼ q3G

ajx
ðNþ1Þ
3

xð1Þ
3

; bH ðkÞb ¼ q3g
ðkÞb��xðkþ1Þ

3

xðkÞ
3

F
a ¼

Z xðNþ1Þ
3

xð1Þ
3

q3o3G
a dx3; bF ðkÞb ¼

Z xðkþ1Þ
3

xðkÞ
3

q3o3g
ðkÞb d�x3

C
ja ¼

Z x3ðNþ1Þ

xð1Þ
3

qcvG
jGa dx3; bC ðkÞba

¼
Z xðkþ1Þ

3

xðkÞ
3

qcvgðkÞjGa d�x3; eC ðkÞja ¼
Z xðkþ1Þ

3

xðkÞ
3

qcvgðkÞjgðkÞb d�x3

�A
a ¼

Z xðNþ1Þ
3

xð1Þ
3

orij

oT
T _�ijG

a dx3; eAðkÞb ¼
Z xðkþ1Þ

3

xðkÞ
3

orij

oT
T _�ijgðkÞb d�x3

�A
aI ¼

Z xðNþ1Þ
3

xð1Þ
3

orij

oT
T _�IijG

a dx3; eAðkÞbI
¼
Z xðkþ1Þ

3

xðkÞ
3

orij

oT
T _�Iijg

ðkÞb d�x3

_W
a
¼
Z xðNþ1Þ

3

xð1Þ
3

rij _�
I
ijG

a dx3;
_eW ðkÞb

¼
Z xðkþ1Þ

3

xðkÞ
3

rij _�
I
ijg

ðkÞb d�x3
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B
jca ¼

Z xðNþ1Þ
3

xð1Þ
3

~sþ o~l
oT

� �
GjLcGa dx3; �B

ðkÞbca ¼
Z xðkþ1Þ

3

xðkÞ
3

~sþ o~l
oT

� �
gðkÞbLcGa d�x3

bBðkÞjda
¼
Z xðkþ1Þ

3

xðkÞ
3

~sþ o~l
oT

� �
GjlðkÞdGa d�x3; ~B

ðkÞbda ¼
Z xðkþ1Þ

3

xðkÞ
3

~sþ o~l
oT

� �
gðkÞblðkÞdGa d�x3

P
a ¼

Z xðNþ1Þ
3

xð1Þ
3

~lifiG
a dx3

V
ja ¼

Z xðNþ1Þ
3

xð1Þ
3

~s;ifiG
jGa dx3; eV ðkÞba ¼

Z xðkþ1Þ
3

xðkÞ
3

~s;ifigðkÞbGa d�x3

Y
ja ¼

Z xðNþ1Þ
3

xð1Þ
3

~sfaG
jGa dx3; eY ðkÞba ¼

Z xðkþ1Þ
3

xðkÞ
3

~sfagðkÞbGa d�x3

X
ja ¼

Z xðNþ1Þ
3

xð1Þ
3

~sf3o3G
jGa dx3; eX ðkÞba ¼

Z xðkþ1Þ
3

xðkÞ
3

~sf3o3gðkÞbGa d�x3

b
ðkÞacb ¼

Z xðkþ1Þ
3

xðkÞ
3

~sþ o~l
oT

� �
GaLcgðkÞb d�x3; �b

ðkÞjcb ¼
Z xðkþ1Þ

3

xðkÞ
3

~sþ o~l
oT

� �
gðkÞjLcgðkÞb d�x3

b̂
ðkÞadb ¼

Z xðkþ1Þ
3

xðkÞ
3

~sþ o~l
oT

� �
GalðkÞdgðkÞb d�x3; ~b

ðkÞjdb ¼
Z xðkþ1Þ

3

xðkÞ
3

~sþ o~l
oT

� �
gðkÞjlðkÞdgðkÞb d�x3

eP ðkÞb ¼
Z xðkþ1Þ

3

xðkÞ
3

~l;ifig
ðkÞb d�x3

bV ðkÞjb ¼
Z xðkþ1Þ

3

xðkÞ
3

~s;ifigðkÞjgðkÞb d�x3

bY ðkÞjb
a ¼

Z xðkþ1Þ
3

xðkÞ
3

~sfagðkÞjgðkÞb d�x3

�X
ðkÞab ¼

Z xðkþ1Þ
3

xðkÞ
3

~sf3o3G
agðkÞb d�x3; bX ðkÞjb ¼

Z xðkþ1Þ
3

xðkÞ
3

~sf3o3gðkÞjgðkÞb d�x3
The following definitions have been employed in Eqs. (2.24) and (2.25)
k
j
c ¼

Z xðNþ1Þ
3

xð1Þ
3

LjLc dx3; ~k
ðkÞdc ¼

Z xðkþ1Þ
3

xðkÞ
3

lðkÞdLc d�x3; k̂
ðkÞjd

¼
Z xðkþ1Þ

3

xðkÞ
3

lðkÞjlðkÞd d�x3
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�f
c
a ¼

Z xðNþ1Þ
3

xð1Þ
3

faLc dx3; f̂
ðkÞd
a ¼

Z xðkþ1Þ
3

xðkÞ
3

fal
ðkÞd d�x3

xc ¼ f3Lcjx
ðNþ1Þ
3

xð1Þ
3

; x̂ðkÞd ¼ f3l
ðkÞd ��xðkþ1Þ

3

xðkÞ
3

n
c ¼

Z xðNþ1Þ
3

xð1Þ
3

o3Lc dx3; n̂
ðkÞd

¼
Z xðkþ1Þ

3

xðkÞ
3

o3l
ðkÞd d�x3
Appendix B. Classical laminated plate theory

This appendix outlines the necessary manipulations of Eqs. (2.7a) and (2.7b) required to obtain the cor-
rect form of the governing equations for the CLPT. Body forces are ignored for this analysis. Direct appli-
cation of Eqs. (2.7a) and (2.7b) gives
I
rj €U

r
a ¼ N

j
ab;b � R

j
a3 þ sj

a

�I
00 €U

0

3 ¼ �N
0

3b;b � �R
0

33 þ oa
�M

00

abU
0
3;b

� �
þ �s03

ðB:1Þ
The correct forms of the inplane governing equations for CLPT are obtained by realizing that o3P
0 = 0.

This result gives R
j
az ¼ 0 and Eq. (B.1a) directly reduces to the following form
I
rj €U

r
a ¼ N

j
ab;b þ sj

a ðB:2Þ
The correct bending equation can be obtained as follows. Substituting the relations U 1
a ¼ �U 0

3;a,
R
1

a3 ¼ N
0

a3, and �M
10

ab ¼ �M
01

ab ¼ N
1

ab into Eq. (B.1a) for j = 1 and differentiating with respect to xa gives
�N
0

3b;b ¼ �I
01 €U

0

a;a þ I
11 €U

0

3;aa þ �M
01

ab;ab þ s1a;a ðB:3Þ
Substituting these relations into Eq. (B.1b) and using the assumption of plane stress gives the final form of
the governing bending equation for the theory.
�I
00 €U

0

3 þ I
01 €U a;a � I

11 €U
0

3;aa ¼ �M
01

ab;ab þ oa
�N
0

3bU
0
3;b

� �
þ �s03 ðB:4Þ
where the relations �M
00

ab ¼ �N
0

3b has been used.
Appendix C. Generalized third order laminated plate theory

The displacement field proposed by Reddy (1990) for the development of the generalized third order
laminated plate theory is given by
ua ¼ U 0
a � x3bwb;a þ b x3 �

4

3h2
x33

� �
/̂a �

1

2
x23kw3;a �

4

3h2
x33bws;a �

1

3
x33ch3;a

u3 ¼ bws þ awb þ x3kw3 þ x23ch3 ðC:1Þ
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Reddy defines the resultants used in his equilibrium equations in the following fashion
Nij;Mij; P ij; Sij

� �
¼
Z h2

�h2
1; x3; x23; x

3
3

� �
rij dx3 ðC:2Þ
where contracted notation has been employed.
Using the previously given inplane displacement expansion functions in the current framework gives the

following equilibrium equations
N
0

ab;b � R
0

a3 ¼ 0

N
1

ab;b � R
1

a3 ¼ 0

N
2

ab;b � R
2

a3 ¼ 0

N
3

ab;b � R
3

a3 ¼ 0

N
4

ab;b � R
4

a3 ¼ 0

N
5

ab;b � R
5

a3 ¼ 0

ðC:3Þ
The corresponding out of plane equilibrium equations are
�N
0

3b;b � �R
0

33 þ oa N
0

ab bws þ cwbð Þ
� �

þ �s03 ¼ 0

�N
1

3b;b � �R
1

33 þ oa N
0

ab bws þ cwbð Þ
� �

þ �s13 ¼ 0

�N
2

3b;b � �R
2

33 ¼ 0

�N
2

3b;b � �R
2

33 ¼ 0

ðC:4Þ
where the identity �M
00

ab ¼ N ab has been used. Note that the restrictions imposed by Reddy requiring that the
only nonlinearities retained are related to wb and ws, that there are no shear effects on the top and bottom
surfaces of the plate, and that the normal stress effects on the top and bottom surfaces of the plate are re-
lated only to wb and ws have been directly employed in the above equations.

Consideration of Eq. (C.3a) shows that these equations are equivalent to Reddy�s Eq. (18a-1) and (18a-2)
since R

0

a3 ¼ 0 and the N
0

ab in the current theory are equivalent to the Nab in Reddy�s theory.
Similarly consideration of Eq. (C.3c) shows that these equations are Eqs. (18a-5) and (18a-6) since the

following identities hold
N
2

ab ¼ b Mab �
4

3h2
Sab

� �
R
2

a3 ¼ b N a3 �
4

h2
P a3

� � ðC:5Þ
The equivalence between the out-of-plane equilibrium equations in the current theory and Reddy�s the-
ory can be demonstrated as follows. Eqs. (C.3b) are related to wb,a while Eq. (C.4b) are related to wb. To
obtain consistency Eq. (C.3b) is differentiated with respect to xa and the result is subtracted from Eq. (C.4b)
to give
N
1

ab;ab þ �s03 þ oa N
0

ab bws þ cwbð Þ
� �

¼ 0
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This process is equivalent to that used to develop CLPT equations. The following identities
N
1

ab ¼ aMab

�s03 ¼ aq
show the required equivalence of the equilibrium equations for wb between the two theories.
Differentiating Eq. (C.3e) with respect to xa and subtracting the result from Eq. (C.4b) gives
R
4

a3;a � N
4

ab;ab þ �N
1

a3;a þ �s13 þ oa N
0

ab bws þ cwbð Þ
� �

¼ 0
Identifying the following relations
N
4

ab ¼ b
4

3h2
Sab

R
4

a3 ¼ b
4

h2
P ab

�N
1

a3 ¼ bN a3
shows the required equivalence of the equilibrium equations for ws.
Differentiating Eq. (C.3d) with respect to xa and subtracting the result from Eq. (C.4c) gives
N
3

ab;ab � �R
2

33 ¼ 0
The relations
N ab ¼ 2kP ab

�R
2

33 ¼ N 33
in conjunction with the above equilibrium equation demonstrate the equivalence of the equilibrium equa-
tions for w3 between the two theories.

Carrying out similar processes using Eqs. (C.3f) and (C.4d) also indicates that Reddy�s equilibrium equa-
tions for h3 can be obtained from the current theory.

The above manipulations indicate that Reddy�s generalized, third order theory can be obtained consist-
ently from the current theoretical framework.
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